Potential Methods to achieve Immortality

Listed below are the potential means by which humans can achieve biological immortality.

Transhumanism

Transhumanism, abbreviated as H+ or h+, is an international intellectual and cultural movement that affirms the possibility and desirability of fundamentally transforming the human condition by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities. Transhumanist thinkers study the potential benefits and dangers of emerging technologies that could overcome fundamental human limitations, as well as study the ethical matters involved in developing and using such technologies. They predict that human beings may eventually be able to transform themselves into beings with such greatly expanded abilities as to merit the label "posthuman".

Suspended animation

The slowing of life processes by external means without termination. Breathing, heartbeat, and other involuntary functions may still occur, but they can only be detected by artificial means. Extreme cold can be used to precipitate the slowing of an individual's functions; use of this process has led to the developing science of cryonics. Cryonics is another method of life preservation but it cryopreserves organisms using liquid nitrogen that will preserve the organism until reanimation. Laina Beasley was kept in suspended animation as a two-celled embryo for 13 years. Placing astronauts in suspended animation has been proposed as one way for an individual to reach the end of an interstellar or intergalactic journey, avoiding the necessity for a gigantic generation ship; occasionally the two concepts have been combined, with generations of "caretakers" supervising a large population of frozen passengers.

Strategies for Engineered Negligible Senescence

Strategies for Engineered Negligible Senescence (SENS) is the term coined by British biogerontologist Aubrey de Grey for the diverse range of regenerative medical therapies, either planned or currently in development, for the periodical repair of all age-related damage to human tissue with the ultimate purpose of maintaining a state of negligible senescence in the patient, thereby postponing age-associated disease for as long as the therapies are reapplied. The term "negligible senescence" was first used in the early 1990s by professor Caleb Finch to describe organisms such as lobsters and hydras, which do not show symptoms of aging. The term "engineered negligible senescence" first appeared in print in Aubrey de Grey's 1999 book The Mitochondrial Free Radical Theory of Aging, and was later prefaced with the term "strategies" in the article Time to Talk SENS: Critiquing the Immutability of Human Aging De Grey called SENS a "goal-directed rather than curiosity-driven" approach to the science of aging, and "an effort to expand regenerative medicine into the territory of aging". To this end, SENS identifies seven categories of "damage" and a specific regenerative medical proposal for treating each.

Stem-cell therapy

Stem-cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to treat disease or injury. Many medical researchers believe that stem-cell treatments have the potential to change the face of human disease and alleviate suffering. The ability of stem cells to self-renew and give rise to subsequent generations with variable degrees of differentiation capacities, offers significant potential for generation of tissues that can potentially replace diseased and damaged areas in the body, with minimal risk of rejection and side effects. A number of stem-cell therapies exist, but most are at experimental stages or costly, with the notable exception of bone-marrow transplantation.[citation needed] Medical researchers anticipate that adult and embryonic stem cells will soon be able to treat cancer, Type 1 diabetes mellitus, Parkinson's disease, Huntington's disease, Celiac disease, cardiac failure, muscle damage and neurological disorders, and many others. Nevertheless, before stem-cell therapeutics can be applied in the clinical setting, more research is necessary to understand stem-cell behavior upon transplantation as well as the mechanisms of stem-cell interaction with the diseased/injured microenvironment.

Resveratrol

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced naturally by several plants when under attack by pathogens such as bacteria or fungi. The effects of resveratrol are currently a topic of numerous animal and human studies. Its effects on the lifespan of many model organisms remain controversial, with uncertain effects in fruit flies, nematode worms, and short-lived fish. In mouse and rat experiments, anticancer, anti-inflammatory, blood sugar-lowering and other beneficial cardiovascular effects of resveratrol have been reported. In humans, however, while reported effects are generally positive, resveratrol may have lesser benefits.In one positive human trial, extremely high doses (3–5 g) of resveratrol, in a proprietary formulation designed to enhance its bioavailability, significantly lowered blood sugar.

Nanotechnology

Nanotechnology (sometimes shortened to "nanotech") is the manipulation of matter on an atomic and molecular scale. Generally, nanotechnology works with materials, devices, and other structures with at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale. With a variety of potential applications, nanotechnology is a key technology for the future and governments have invested billions of dollars in its research. Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested 1.2 billion and Japan 750 million dollars. Nanotechnology is very diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. Nanotechnology entails the application of fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, microfabrication, etc. Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials, and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is E47:E95

Nanomedicine

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. One nanometer is one-millionth of a millimeter. Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field. Nanomedicine is a large industry, with nanomedicine sales reaching 6.8 billion dollars in 2004, and with over 200 companies and 38 products worldwide, a minimum of 3.8 billion dollars in nanotechnology R&D is being invested every year.As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Mind Uploading

Whole brain emulation or mind uploading (sometimes called mind transfer) is the hypothetical process of transferring or copying a conscious mind from a brain to a non-biological substrate by scanning and mapping a biological brain in detail and copying its state into a computer system or another computational device. The computer would have to run a simulation model so faithful to the original that it would behave in essentially the same way as the original brain, or for all practical purposes, indistinguishably. The simulated mind is assumed to be part of a virtual reality simulated world, supported by an anatomic 3D body simulation model. Alternatively, the simulated mind could be assumed to reside in a computer inside (or connected to) a humanoid robot or a biological body, replacing its brain. Whole brain emulation is discussed by futurists as a "logical endpoint" of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Among futurists and within the transhumanist movement it is an important proposed life extension technology, originally suggested in biomedical literature in 1971. It is a central conceptual feature of numerous science fiction novels and films. Whole brain emulation is considered by some scientists as a theoretical and futuristic but possible technology, although mainstream research funders and scientific journals remain skeptical. Several contradictory predictions have been made about when a whole human brain can be emulated; some of the predicted dates have already passed. Substantial mainstream research and development are however being done in relevant areas including development of faster super computers, virtual reality, brain-computer interfaces, animal brain mapping and simulation, connectomics and information extraction from dynamically functioning brains.

Immunization

The process by which an individual's immune system becomes fortified against an agent (known as the immunogen). When this system is exposed to molecules that are foreign to the body, called non-self, it will orchestrate an immune response, and it will also develop the ability to quickly respond to a subsequent encounter because of immunological memory. This is a function of the adaptive immune system. Therefore, by exposing an animal to an immunogen in a controlled way, its body can learn to protect itself: this is called active immunization.

Human Cloning

Human cloning is the creation of a genetically identical copy of a human. It does not refer to monozygotic multiple births or the reproduction of humans/animals cells or tissue. The ethics of cloning is an extremely controversial issue. The term is generally used to refer to artificial human cloning; human clones in the form of identical twins are commonplace, with their cloning occurring during the natural process of reproduction. There are two commonly discussed types of human cloning: therapeutic cloning and reproductive cloning. Therapeutic cloning involves cloning cells from an adult for use in medicine and transplants, and is an active area of research. Reproductive cloning would involve making cloned humans, for couples wanting to have a child, but cannot naturally. A third type of cloning called replacement cloning is a theoretical possibility, and would be a combination of therapeutic and reproductive cloning. Replacement cloning would entail the replacement of an extensively damaged, failed, or failing body through cloning followed by whole or partial brain transplant or harvesting the internal organs of the clone.

Genetic Engineering

Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome using biotechnology. New DNA may be inserted in the host genome by first isolating and copying the genetic material of interest using molecular cloning methods to generate a DNA sequence, or by synthesizing the DNA, and then inserting this construct into the host organism. Genes may be removed, or "knocked out", using a nuclease. Gene targeting is a different technique that uses homologous recombination to change an endogenous gene, and can be used to delete a gene, remove exons, add a gene, or introduce point mutations. An organism that is generated through genetic engineering is considered to be a genetically modified organism (GMO). The first GMOs were bacteria in 1973; GM mice were generated in 1974. Insulin-producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994. Genetic engineering techniques have been applied in numerous fields including research, agriculture, industrial biotechnology, and medicine. Enzymes used in laundry detergent and medicines such as insulin and human growth hormone are now manufactured in GM cells, experimental GM cell lines and GM animals such as mice or zebrafish are being used for research purposes, and genetically modified crops have been commercialized. This article focuses on history and methods of genetic engineering, and on applications of genetic engineering and of genetically modified organisms (GMOs). The article on GMOs focuses on what organisms have been genetically engineered and for what purposes. The two articles cover much of the same ground but with different organizations (sorted by application in this article; sorted by organism in the other). There are separate articles on genetically modified crops, genetically modified food, regulation of the release of genetic modified organisms, and controversies.

Cryonics

Cryonics is the low-temperature preservation of humans and animals who cannot be sustained by contemporary medicine, with the hope that healing and resuscitation may be possible in the future. Cryopreservation of people or large animals is not reversible with current technology. The stated rationale for cryonics is that people who are considered dead by current legal or medical definitions may not necessarily be dead according to the more stringent information-theoretic definition of death. It is proposed that cryopreserved people might someday be recovered by using highly advanced future technology. The future repair technologies assumed by cryonics are still hypothetical and not widely known or recognized. Responding to skepticism from scientists such as Steve Jones, an open letter supporting cryonics was written and signed by currently 61 scientists. As of 2012, only around 250 people have undergone the procedure since it was first proposed in 1962. In the United States, cryonics can only be legally performed on humans after they have been pronounced legally dead as otherwise it would be considered murder or assisted suicide. Cryonics procedures ideally begin within minutes of cardiac arrest, and use cryoprotectants to prevent ice formation during cryopreservation. However, the idea of cryonics also includes preservation of people after longer post-mortem delays because of the possibility that brain structures encoding memory and personality may still persist or be inferable. Whether sufficient brain information still exists for cryonics to work under some preservation conditions may be intrinsically unprovable by present knowledge. Therefore, most proponents of cryonics see it as an intervention with prospects for success that vary widely depending on circumstances.

Cloning and body part replacement

Therapeutic cloning and stem cell research could one day provide a way to generate cells, body parts, or even entire bodies (generally referred to as reproductive cloning) that would be genetically identical to a prospective patient. Recently, the US Department of Defense initiated a program to research the possibility of growing human body parts on mice.